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TECHNICAL NOTE 2467

' THE AERODYNAMIC BEHAVIOR OF A HARMONICALLY OSCILLATING )
FINITE SWEPTBACK WING IN SUPERSONIC FLOW

By Chieh-Chien Chang
SUMMARY

By an extension of Evvard's "diaphregm" concept outside the wing
tip, the present paper presents two approximate methods for calculating
the aerodynamic behavior of harmonically oscillating, sweptback finite
wings with both supersonic leading and trailing edges. Both methods
are based upon the fact that the contribution of the so-called "diaphragm"
on the potential at a fixed point on the wing is approximately canceled
by the contribution of a portion of the wing itself, if the wing under-
goes steady harmonic oscillation at a low value of the frequency param-

eter 32 (where ® 1is angular veloclty per second; c is chord; a
a,

ig velocity of sound; snd B = W2 - 1, M being Mach number). It is

further necessary that the point be influenced by the dilaphragm from

only one wing tip.

The first method expresses the integration in terms of Fresnal
integrals. The final expressions for the pressure coefficlent are in
the form of integrals which may be readily evaluated,  using numerical
integration with available mathematical tableg. Some calculations are
shown, and the results check well with the results of the second method.
It is expected that this method should give accurate results in the
engineering sense if the frequency parameter ﬁf% 18 of the order one-
half or less. Even if the frequency parsmeter exceeds this value, the
pressure increments calculated asymptotically approach the correct values
at the inner edges of the tip Mach cone.

As a byproduct of the above approach, the expressions for the down-
wash of the wing wake, influenced by only the two tlp dlaphragms, are
given in terms of Fresnal integrals.

The second method is similar to the first one except that a series
expansion of the source-strength function is used. When the frequency
axc 1

parameter is small (———<<

5<3) the few terms used give good engineering
a
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accuracy. In the present case, five terms are considered. Of course,
the number of terms must increase as the frequency parameter increases.
This method gives closed expressions for the pressure coefficients. In
applying the method, the calculations are lengthy, but no great computing
skill is required. For the benefit of design engineers, some expressions
of the average pressure coefficlent over the entire rectangular wing tip
influenced by three-dimensional flow are given in a closed form, so that
they can be used to estimate the tip effect in preliminary design.

A number of graphs are presented to show the pressure distribution
of the wings at different Mach numbers, sweepback angles, and frequency
parameters. Comparisons of the pressure coefficlents calculated from
the present methods and the exact two-dimensional solutions based on
linearized theory are made.

INTRODUCTION

The aerodynamic behavior of a harmonically osclllating finite wing
in a supersonic flow has been recently studied by a number of investi-
gators, particularly Garrick and Rubinow (reference 1), Evvard (refer-
ence 23, and Miles (reference 3). TFrom the viewpoint of mathematical
physics, it is one phase of the mechanics of wave motion investigated
by a number of great physicists and applied mathematicians such as
Huyghens (reference 4), Maxwell, Kirchhoff, Sommerfeld, Hadamard,
Volterra, and others over & number of years. The classical treatment, .
however, is principally along the line of Cauchy's initial-value problem,
while the present aerodynamic problem is a boundary-value problem. The
classlical results are of some help in the formulation of the present
problem but not of much help in the solution. )

With the advent of guided migsliles and aircraft operating in the
supersonic range, trouble has -been experienced with flutter of the wing
or control systems. It was such troubles that spurred the author to
obtain an understanding of the aerodynemlic behavior of & harmonically
oscillating finite wing at supersonic speed. The two-dimensional case
of an arbitrary unsteady motion has been solved in the last few years
(references 5, 6, 7, and 8). But in the three-dimensional case up to
now very few useful results have been achieved.

The present paper treats the case of a finite wing with the leading
edge ehead of the Mach line. The wing may be swept back or forward.
Another condition has to be imposed, that the Mach cones at the nose and
the tip never intersect within the wing area. With slight modification,
the method can be extended to more general wing plan forms. The wing
is supposed to undergo harmonic oscillations of small amplitude during
flight at supersonic speed.
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For the wing plan form as specifled above, the three-dimensional
flow fields are limited to three portions of the wing area: the area
within the nose Mach cone, and the two areas within the tip Mach cones.
In the remaining wing areas, the aerodynsmic behavior can be calculated
with the two-dimensional theory of swept wings with supersonic leading
and trailing edges under hsrmonic oscillation (reference 6, e.g.).
Therefore, the present investigation 1g limited to the tip area and nose
area of the wing.

The author should express his appreciation to Miss V. O'Brien,
Miss P. Clarken, and Mr. B.. T. Chu for their asslstance in carrying out
the project. The present project was conducted et The Johns Hopkins
University under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.
LINEARIZFED DIFFERENTIAL EQUATION AND
SOLUTIONS .OF SCURCE INTEGRATION
General Analysis

The linearized differential equation of unsteady compresaible flow
is well-¥nown (references 1 and 5)

3% , 3% 52¢_L(§__ .6_)2
> + 2 + 5 Lo\t +U 5 ) (1a)
or, briefly, \
2
v - (at U-g;)gs (1b)

where U .1s the free-stream velocity and a 1s the sound speed of the
free-stream condition. (Symbols used in this paper are defined in
appendix A.) The veloclty vector @ = UL + @' = UL + grad § and Ve

is the Laplaclan operator. The elementary solution of the potential at

a point (x,y,z) at time t due to a source of time-dependent strength A
is

A(&:ﬂ:Q:t '.Tl) + A(E,ﬂ,g,t - T2)
r

¢0(x’YJZ)t5 E,m,8) = (2a)
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where the source is located at (&,n,¢) and

r=-§5 (x - 82 - 82[(y - 12+ (z - £)2] (3)
r o {x- M 5-
177 g82 a ‘ |
' > (L)
r, == BM,
ap® a
where
BE=]d2..'l

In the case of harmonically oscillating source strength the source-
strength function can be written as a product of two functions, one
containing the source position and the other showlng the time dependence,

or, explicitly,
A(ﬁ:"’l:g:t -7T) = K(E.,n,ﬁ)f(t - T)

Equation (2a) then becomes:

¢O(X:Y:Z:t5 g,y 8) = é(_g,r_n‘,i)'[f(t - Tl) + f(t - TEH (2v)

In the whole domain surrounding the wing in supersonic flight, there
1s one particuler streamline surface which i1s of interest to the problem.
This streamline surface is formed by the streamlines, which coming from
upstream either strike the wing leading edge or pass through the fore-
most Mach line of the tip Mach cones. It follows the contour of the
wing (both upper and lower surfaces), reunites at the trailing edge, and
then extends to infinity at downstream.
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Filgure 1 shows the streamline surface which is assoclated with an
osclllating wing in a supersonic flow- at time t.

The whole streamline surface can be divided into eight zones as
shown. Ahead of the supersonic leading edge and outside the two tip
Mach cones, the flow is not influenced by any of the disturbances caused
by the ‘wing. This is called zone 1 as shown. The portion of the stream-
line surface behind the supersonic leading edge and between the tip Mach
cones 1is called zone 2. In this zone the potential at any point on the
top wing surface (or bottom) is never influenced by the flow on the
opposite side. Therefore, the source solutionm of equation (Zb) can be
applied without restriction, if the source-strength function A 1is
known. :

Zone 3 represents the portion of the wing influenced by the right
tip Mach cone and zone 4 by the left tip Mach cone. In these two zones,
the flow on one wing surfacé is influenced by the flow on the opposite
slide. The simple source solution of equation (2b) cannot be applied.

The present paper gives the approximate solubion for these two zones .
for the case where the two tip Mach cones meet on or outside the trailing
edge. The present method with slight modificatlion can also be extended
to the case that the tip Mach cones intersect inside the wing area (not
shown in fig. 1), but no diaphragm within the forward Mach cone of the
point under consideration is influenced by the disphragm on the other
slde. .

Zone 5 is the portion of the streamline surface outside the wing
surface influenced only by the right tip Mach cone; similarly zone 6 is
Influenced only by the left tip Mach cone. Zone 7 is the portion of the
streamline surface after the trailing edge influenced by neither Mach
cone. Zone 8 is the portion of the streamline surface influenced by both
Mach cones. Of course, if the wing moves slightly up and down with time,
the streamline surface and consequently the dlaphragm must alsd move up
and down with it. With the concept of Evvard (reference 9), amy finite
wing in supersonic flow can be considered to be attached over its stream-
line surface outside the wing (such as zones 5, 6, 7, and 8) to a thin
welghtless rubber dlaphragm, of which the pressure on both sides at a
point must be balanced and through which no fluid can leak.

The dlaphragm 1s imagined to extend to the outer edge of the tip
Mach cone, and to coincide with the shape of the streamline surface.
Thus, the rubber dlaphragm can be considered as an extension of the wing.
The flow on the upper side of the wing with its extension can be con-
sidered as independent of the flow on the lower side of the wing and
vice versa. The potential at any point on one side of the wing can be
evaluated from the source distribution on the same slde of the wing and
the dlaphragm within the forward Mach cone of that point. In the steady
case 1t has been shown by Puckett that the source strength at a point
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-of the wing is directly proportional to the slope at the point and inde-
pendent of the slope of its neighboring points. Evvard has shown that
the solutions obtained using the diaphragm concept are identical to
those of conical flow (reference 9).

For steady flows, the principal advantage of Evvard's method is
that the slope of a point on the diaphragm is determined solely by the
slopes of the wing surface along the characteristic or Mach line through
the point, as long as the polnt on the diaphregm is shead of the Mach
cone from the other wing tip. In the case of unsteady flow, it can be
shown that the ebove statement is approximately true if the wing slopes
vary very slowly with time. Using the diaphragm concept, the disturbance
potential at any point can be considered as the effect of sources of the
wing system on the same side. (Of course, the slope of the imaginary
diaphragm depends on the flows over both wing surfaces.) It becomes
gpperent that the potential can be evaluated by the well-known source-
integration method. Let us consider a point on the diaphragm where the
potential contributed by sources on either side of the wing must be the
same. It has been shown by Evvard that the source strength is propor-
tional to the vertical compoment of the perturbation velocity, or, more
directly, is proportional to the locsl slope of the wing surface or the .
diaphragm even if the flow is not steady. Mathematically, this is shown
as A = _w_2 = H%' where w 1is the vertical component of the pertur-

B nB .
bation velocity and « denotes the slope of the streamline surface.
The following equations can be written to denote:

The slope at the upper wing surface at time t - 7y by
‘ o,y = op(&M,+0,% - )

The slope of the upper wing surface at time t - 75 by
O'T’Q = UT(E:”:"'OJt' - Tg)

The slope of the lower wing surface at time t - 7; by
GB,l = UB(gyT\:‘O:t - T]_) ;

The slope of the lower wing surface at time t - 75 by
OB,2 = UB(E.:"]:‘O:t - TE)

(5)

The slope on the diaphragm at time t - 77 Dby
M o= )\.(g,n,o,t - Tl)

The slope on the diaphragm a:b time t - T, by
Ao = x(g,n,o,t - 72)
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Then the potential can be ﬁri‘bten at any point on the top or bottom

streamline surface as:

¢T(x’y’+0:t) = - Ije (UT)l + crT,2) dg dn
2nB T
SW
U ()»1 + ;\,2) ae an
2n52 - - -
Sp

%(xy 0,t) fnglJchQ)dgdn
3J Vs =~
2n62 / r

Sp

(6)

Or, in sn oblique coordinate system whose axes lie parallel to the Mach
lines and vwhose origin 1s placed at the point of tangency of the Mach

line to the leading edge of the wing tip (the junction of the supersomic
and subsonic leading edge) (see fig. 2), these equations can be written

as:
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o{ut,v',t = T ) + oplu',v',t - T
¢T(qu}+O’t) =_2_Iji_.Mff T( 2V l) T( 2V 2) qu' av' - -

(u - u){v - v').
Sw1t5w2 F '

__‘g_ ffX(u!,V',t - Tl) + X(U',V',t ~ T2) du’ av!
‘ oM Al ’ \/(u~u')(v-v') -

¢B(11,V,—O,t) _____;J_ ff UB(u',v','b - Tl) + GB(u',v','t - Te) du' av' - ‘
2 Y - u) v - )
witSy2

U ff X(u‘,v',t - Tl) + }\.(u',v',t - T2) P
2 . _ it .
s \/G ') (v - v')

where (u,v) is the transformed coordinate of the point originally at
(x,y) and (u',v') 1s the transformed coordinate of the source element
originally at (g,n) in the X,y system. The 0ld and new coordinate
gystems are related by the following transformation equations:

(7)

u=-2%(x—8y) V=§ME(X+By)W
c=bvew R
u' =2—b?3-(§-BTl), v ='2%(§+Bﬂ) C (8e)
g =L (v o+ w) | n =5 (v - u')
ag dn=-§%du' av' )




and the quantity r end the time intervals T and T, in the new coordinate system are,
respectively:

7f=}%\/(1—u')(v—v')
T =L(v-v'+u-u')--*-?—\/(u-u')(‘f—v')# (8b)
Y] apM
Tn=-§;—‘-(v—v' +u-u') +%\/(u-u')(v-v')
= QR L ¥ /

If the supersonic and subsonic leading edges are denoted by the equation (see figs. 2, 3, and 4)

v = vy(u) or ua=u(y)

(9)
v = vp{u) or u = uy(v)
then the poéential at any point (uy, V) on the wing can be written as:
U v du’ W op(u, vyt - 1) + oglut,v,t - 7o) av' -
ﬁf(uwvw:+0,t) "o (u'w _ u,)l/E (vw _ v,)l/E_
2 (%) mle)
o [ ) s )
oM - ) t/2 - vy /2
CEREC T (v = )Y
vl . LVVl\LI / ’
v L]
v }.(u',V’,‘t - "rl) + )\.(u',v',t - Te) v (10)
(VW _ vl)l72 -
vo{u')

Lohe NI VOUR
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’(A similar expresslon can be obtained for ¢B.) Now 1t wlll be shown that in the case

monic oscillation the second integral is approximetely zero under certein conditions.

*

For steady harmonic oscilletion of a thin flat wing, assume:

,_GB :lO’T =0 = Eeimt
where o 18 everywhere the same on the wing.
| Further, assume:

= A(u,v)elet

of har-

(11a)

(11p)

where i(u,v) 1s the amplitude of oscillation of points on the diaphragm end ls e function of
the point (u,v). The term A(u,v) may be complex, including the time lag of the oscillation,

because the time lag must be & functlon of location only.

With ¢ and A glven by equetions (1la) and (1_'Lb), respectively, the second integral

(along constant u) of equation (10) can be written as:

1 o v ’
vg(u ) UT(E"V,’t- Tl)+GT(ut,'Vt,'t-T21 . v N(ut,V',t—Tl)ﬂ')\-(u'JV';t—T2) .
(v _vi)l/E v’ + (v _.v.l)l/e av’ =
"ﬁ('llt) v Vg(ul) v '
vp(u') =i o
. ° ea—ﬁ-(vr v cos ’.—_’mM (uw—u‘)l/e(v -v! 1/9]
pel® |y . — (uy - u') <& i dv' +
(v - ') 1/2
vo(ur)
Vi =1 ot ’
.X(ul)vl EE(VW v ) cos [:;:I (uw-u')l/a(vw-‘v')l/e] 1 (12)
— ay?
1y 1/2 B

JVQ(U.‘) (vw v )

Lote NI VOVN -

o e —— o ket AR = A e & e =



When o = 0, that is, the steady case, this 1ntegral reduces to Evvard's result in refer-
ence 2 and has been shown to be exactly zero. For o # O, the imtegrael will again be zero if

cos [QE; (wy - u')l/2(vw - v')l/§] =1 exactly. Thia will be clear from the following
8

consideration.

Evverd in reference 2, equation (24), showed that for any point (uD, VD) on the disphregm
(see fig. 2) the following relation exists along the characteristics line u' = up

' k(u‘)v',t - Tl) + R(u',v‘,t - T2)
(VD - v:)l/E -

av' =

72(11')

fve(ul) UB(U':V')t = L-L) + Uﬁ(u’JV'Jt = TE) - Op u"v"t " Tl) - UT<u"v',t N T2)

J'Vl(U.')

This means that along the cherecteristic line u = Constant +the total effect of the.dlaphregm
source strength is equal to the totel effect of source strength on both wing surfaces along the
pame characteristics, and that it 1s independent of the source strength of the diaphragm or the
wing surface outside the above characteristice. Now, along this element u’ = up,

lMenbers of the NACA staff recently expressed the cpinion thet "Since T;. and T, con-

tain the variebles u', a second-order integral equation is generally required rather than the
pimplified first-order integral equation given. Equation [13] is satisfactory 1f T may be
represented a8 varying linearly with time in the interval (Tl -.72) " TIn the present analysis,

the use of eguation (13) is Jjustified.

Lo%e NI VouN
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T1=glE(VD"‘") =Tp

Substituting equations (1la), (11b), and the above value of the T's
into equation (13), there is obtained:

vp vp-v' ) vo(u') vp-v"
_ iolt - _ o t -
T . U s . 0 U
(VD j V,)1/2 (VD _ V.)1/2
vo(u') vy (u')

Now:if in equation (12) cos [aﬁ% (uW - 1.1')1/2(vw - v')l/e] =1 exactly, "

the integral at the right-hand side of the egquation will reduce to the
form:

volu') . Vi sl
A e ) vt + B () av! (15)
t\1/2 n1/2
vi(u') (vw oY ) / vo(u') (vw -V ) /

which according to equation (14) is zero, because here Vi = Vp-

In general, cos EQ-I?—M (uW - u') :L/e(vW - v')l/z]_= cos ‘-I-:'— is less

than unity. (Note that 1 = -Bl—2 \/(x - £)2 - B2(y - 1)2 dis the hyper-

bolic distance, not the geometrical distance.) But for small values of
a—:—, the variation of cos u_:__ from unity is very small. Suppose that

the following condition 18 imposed: %— < % Then
-
1 2 cos ‘%r- >1 - —é—(%) = 0.875. In both integrals the factor cos —-

wlll reduce the velue of each integrand a small percentage in view of
the monotonically ‘decreasing nature of cos % for small values of _c%r_.
Of course, the net contribution of both integrals cannot cancel out

exactly as if cos % = 1, which is located on the left tip Mach line.
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oximation, however, there can be written that

o
O
G
[4:]
o
-
4
o+
3
g

dlaphragm Sy ( 1g. 2) and the portion of wing eres 8., cance
solution is too difficult to obtain, particularly with sweptback wings.

then become:

-~ A“t

.L.lC
1l each o

P )
L L

S du! Yw oplu',v',t "Tl) + UT(u":v':t - T2)

bu
th

-.I.J-.. .cl L

L1ULL

er; otherwise, the
Equation (10) will

If the above approximation is analyzed more carefully, it will

of cos %f- on the dlaphragm 1g slightly larger thnn that on £

‘the following way: On the diaphragm v2 Sv' Sv, and on the wing vy

+ Vi
For the purpose of illustration, take the average value of +' = vt T2

‘ Vi + Vo ‘
v = _-'-_2.£ on the wing. Ther 1t is clear that

e
1'

ir & <:%. In other words, the comtribution of the “i&p,iagm
to the tip corner of the trailing edge, particularly
on the pide edge of the tip where the contribution due to the wing aree §

a

elte comtribution of the wing area Sw2

: (“w _ v,)1/2

be found that the average value

he wi

on the diaphragm and

. 18 zero (see

equation (16) end fig. 3). Therefore, the pressure at the side edge of the tip cannot be zero
as predicted with the present approximation. But as the point considered spproaches the left

Lohe NI VOVN

av' (16)

€1

— e,
— e — . — .



characteristic of the right Mach cone {i.e., r = 0) the present approximation approaches the =
exact solution gs & limit. This 1ls favoraeble to the present approximation for two reagons.

First, the pressure increment in the neighborhood of the side edge of the tlp is expected to be
negligibly small, particularly at a low frequency parameter. Its contribution to the aero-

dynamic behavior of the wing specified is negligible. The present approximation asymptoticelly
approaches the exact value near the left tip Mach line where the magnitude of pressure incre-

ment 18 much higher and becomes more important to the merodynamic behavior of the wing than

that at the side edge of the tip. Besides, the major portion of the wing ares is calculated by

the two-dimensional theory as shown in references 5 and 6 and total contribution of the tip is
usuelly not too lmportant. Therefore, the approximation 1s of good engineering accuracy.

Calculation of Downwash Angle k(u,vD,t) for Harmonically Oscilleting Wing

In reference 2 (equation (26)), Evverd has shown that the downwash angle in zone 5 or 6
(fig. 1) is given by:

, ve(u) : N ' ot —
1 . o Jég(u,v',t B _QEE——_) - UT(“:V',t - _QEE_—_)](VE - v')l/e
Eﬂ(TD“ VE)I/E e | ) (VD - v,)}/e

dv?!

)..(u,vb,t) =

(17)2
An approximate method of evalusting the above integral is presente& below.

If equation (1la) ip substituted into equation {17), the following eguation is obtained:

’ ( .) -im 1. .

e loot Volu eaﬁ‘(vD-v ) ( )1/2 (18)
vp - V' dav!

t)l/E |

sVpet) = - :
L(u vp ) “(VD ] v2)1/2 - (VD -
v (u

[

2See remsrks sbout equation (13).

Lohe NI VOVN
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Obviously, .

'A—>e a8 Vp—>7Vp

A—> 0 as VD;> P
For the case vp > Vo (fig. 2),_ Vo - V3 can be divided into n equal
parts and the ith division can be denoted by vi' (where vy' = v
for 1 =0 and wv4' =vy, for i =mn). Then,
Vi"l‘l
1w .
— dwt n o 8B (vp-v')
,r(v _v)l/ez S 1/2
‘ D~ 2 1=0 Jy, 1 - (" )
'+l
i -im
_ 4wt n aB (vp-v')
_ ae ( 1 1/2 [S '
= - V2 -V ) av
zr(v - V. )1/2 (v - v‘)1/2
D 2 1=0 v, ! D : .
i
(19)

where the division is so fine that vp - v = Vo - vi‘ can be taken out

of the integration sign for the first approximation. Incidentally, the
integral left can be transformed to the Fresnal integral (reference 10).
Equation (19) then becomes:

ag\L/ aeiwt" n / |
ot) = ()7 B S (v - ) Yo [o(2an) -

(V‘D - v2) —

C(Zy) - 18(Z441) + w(ziﬂ ‘ (20)

e e e
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where

Zy = (E%%)l/Q(vD - vi)l/e'

Z
c(z) =f cos % 72 az , 7 (21)
0

. Z ‘
-s(z)=f sin%szZ
0 .

J

Some of the basic properties of the Fresnal integral are given in
equations (29).
APPROXIMATION THEORY OF VELOCITY POTENTIAL AND PRESSURE COEFFICIENT
AT A POINT ON A HARMONICALLY OSCILLATING SWEPTBACK FINITE

WING WITH SUPERSONIC LEADING EDGE3 - FIRST METHOD

Assume the whole wing flepping up and down according to
'UT(t) = C_Lei“’t where a 1is the amplitude of oscillation. In fact,

Maximum descending rate of wing hmax

Free-stream velocity U

a =

’

The frequency of oscillation per second is .2‘% The velocity potential
of such oscillation may be considered as due to harmonic sources and is

3The suthor should express his appreciation to Dr. J. C. Evvard
for a discussion on this approximation method in May 1948.




given by equaticn (6). It has also been shown tha't for the harmonically oascillating wing,
equation {6) can be further simplified to equation {16) ae follows:
- =doT -1, -
¢T(uwvw+0:t) = UEe? ff = i e 2 dg dn
onp2 U r
Syl
v
U Pu'w 1 P Y oo u,v',t - T ) + Urrl(uisvist - Tn
= == — = = — av' (22a
oM (“v _ u.)l/ej (v _ v:)l/E (22a)
a Vo) vy (u)
where
[ /o]

VN

-~
L

Lot KL ¥

LT
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Since in most practical cases straight leading edges are under consider-
ation, put (cf. equation (9) and fig. 3):

v/ky

v =vy(u) =ku or u uy (v)

4
I

up(v) = v/ky

vo(u) = ksu or u

as the equation of the supersonic wing edge outside the tip Mach cone
and the subsonic leading edge within the Mach cone. Then, equation (222)

can be written as:

’

Bl Vs 40,8 = wel® [ Y aw e%liﬂg[(v"'v'*“"‘“') #Buu) Y Bryv) Y]
T o (- w2 | (- VYR (e
v,

ku )

vty 3 5(ueut) Y2 (v 2]
vhere it is understood that e
Ze[evervtrogenty - Bou ) 20nv ) 2
gtands for the sum of e
10 vt} + Gt Y 2w /2]

and aB
Introducing the followingl new varisbles 7 and Z instead of V',
2w 1/2 1/2 _ 1 1/2]
= aBﬁ [( - v') - % (uyy - u') | (23a)
= [eaw\l/2 , 1 1/5]
Z = (ﬁ) [(yw -2 a2 (- u y1/2 (23b)
so that
1/ \/2 av
dz = = —-2—(3-57[) ( vl)l[2




Then equation (222) can be written as:

t LA /2 Z
\ e 10 / oy \-1/2 du'e aME(uwu)fe xa JZg - '%22
By Vs 10, ) = (ﬂ_) . aze * aze
Mr  \aBx 11/2 -
(e - u') Zq Zy
/Ko
| -ty
_ At a?
_ e 2w "'1/2 du'e _ -l 7
. - Mn (&Bﬂ) (u, - ur)l/2 {C(Zl) C.(Zl)‘ ' i[:S(Zl) i S(Zl)]} (24)
A
where
Z; f (f—é—nﬁ)l_/e[(vw - klu')l/e - % (uy - u')lfa] corr_esponding to v' = klu' (25a)
7, = '%I ﬁl—j;)l/z(uw - u')1/2 ' corresponding to V' = v (25b)
‘1 = (E%%)l/elgvv - klut)l/e + % (v, - u.‘ 1/2] correspondingfc.o v' = ku! {(25¢)
Zp = %(3_25%)1/2(% - u.)l/e . corresponding to v' = v (254)

Lo42 NI YOvN
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Now introduce another new variable Y instead of u':

_ (208 \1/2 n1l/2 |
v=(Se) (Y (26)
80 that
ay = -L(28\Y/2__ au
2 T[a_ME (uw - u.)l/2
2 /2
2w M Y
2y = [gg; (Ve - Kuy) + 5 Y% -3 (27a)
Zp=-5 (27b)
_ iy M2 1/2 v
Z) = |gag (- Kawy) + 52 Y tg ('27c)
Zp =3 = 2 o (274)
If
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then equation (24) becomes:

_im o |-C(Z1) + 15(Zy)

51
_ Uaa elot o 2
B(uyp Vip0,t) = == e J; dy o(fy) + 15(2) (28)

At this stage more Fresnal integrals can be introduced by integrating
by parte. For this purpose, the following properties of a Fresnal
integral may be useful:

€ i 2 ne?
c(e) - 15(e) T e 12 2[J (@) - 13, ,(a)] aat
€) - €) = e €' == a') - ot !
o 2Js -1/2V " 1/2 ]
ne2
=% . 3_1/2(2)(a') da! (29a)
() |
€
u[; S(e') ae' =eS(e)+%t.cos.g_ez-%{ (29b)
€
f C(e') de' = eC(e€) -%;singee (29¢)
0
C(e) =Jl-gee +J5-2—e2)+J9-gee + .. .= J; 552 (294)
R I PR M
8(e) =J 562 + J g-e +J1132£€2 + . = J3 EEQ) (29e)
(£ a5 nged) oSy
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where J( ) is the Bessel function and H(E)( ) is the Hankel function
of the second kind and various subscripts indicate the order of these
functions. For large values of ¢,

ce) = % + ;%G— sin 3 €2 + o(:la-> (29¢)
S(e) = %-- é% cos-g €2 4+ 0(55) (29g)

§(2=) = ¢(2%) = = ~ (2%nm)
S(€) = -8(-),. Cle) = -C(~c) | (291)

For details, see reference 10, pages 5hl to 546 and Thh to 745, and also
reference 11. .

However, it 1s difficult, if not impossible, to reduce equation (28)
to a closed form. Besides, there is usually more interest in the pres-
sure coefficient which is generally known as: -

| 2 38 22
(o] +t = -—_— - —
p(%75%) U2 3t U dx : (30)

rather than the potential itself. In the ﬁ,v coordinate system, the
pressure coefficient is given by:

o 3 2(3¢ duy 3 va>

Cp(:#0,%) = -5 S - o, o T Svs Ox

2 3 g o -
T2 3t UB<Buw ov. > ' . (8
) NOV,'

g = 'W(uwva:"'o\:t) ’ (32)
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Differentiating equation (28) with respect to u, and v,

LS
o _ upselt 2

Yy 4 ‘ ‘ .
duy, M2 Y, {_C(Z3) - C(Z3) + i[S(Z3) + 8(23)} +.

i in —
U 51t L im o - 7% - X 7,2
- e ° arf + S (33)
n , . BZy + Y BZ, - Y
0
ix 2
-5 Y
— 1wt 2 1
o _ 1 UpGe T e o(2aY - O(ZaY + 15(2.) + 15z
va k2 e Y ( 3) ( 3) ( 3) + ( 3)
Y. in in =
T Jix g2 -Fyp Xz
= ° o i (34)
where
: o 1/2
- |20 KM= o p4l
Z3 - |}3-a (vW - kluw) -+ B2 Yl} - -B— (358.)
_ kM2 . 1/2 I,
23 = |opg (v Jaw) + =51 t (350)
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The pressure coefficient is then given by:

Mx

_ iwt 1<1}"k2>1 e"z_’fl2

C (X)Y:"'O,t) = ae -
DY ko

ix , 2 in 5 o

e___.zl e_?l
is(Z + Mok + 6
(l)l B ( 1) Bz, + ¥ o7, - (36)

The above equation is used to calculate Cp along the trailing

edge of a rectangular wing tip which is harmonically oscillating. (See
fig. 5.) In this particular instance, M =\/2, the frequency parameter
_w% = 0.2, and the chord ¢ 1is taken as-unity. The curve is plotted in
ap C -

the form -_ia;tL against y (positive y measured outward along the

ae
span) so that for any specified amplitude of oscillation o +the pres-
sure distributg.on at any instant t can be estimated from a single

curve. As —_nPEt' is a complex quantity, the real and maginazy parts,

ae
C C
denoted by _ir.%E and _ﬂ% » respectively, are plotted separately.
ae R ae I

If the harmonic oscillation is o cos wt, that is, the real part of
c‘zeim't, then Cp can be calculated from:

Cp(f,%,t) = a[(_—i%) cos wht - (—f&) sin wt:l (372)
_ R I :




Similarly, if the oscillation is @ sin ot, thet is, the imaginary part of Gel®®, i1t 4s given

Dy

X — C . C
CP(C,E,{;) = aK—i%)R 8in ot +‘(__f.1cirt—)l cos cnt] (37b)

Ge e
L\ \
It 18 interesting to note that when y = 1 these values conform with the two-dimensional
values given in reference 6.

As poon as Cp everywhere over the wing. 'tip ie ]mown, it is aimple to obtain Cp, Cp,
end Cy graphically ) - :

As far as the ‘calculation of the center Bection 1s concerned, 11: 18 easy to show that
(see fig. W)

ooy B [ a e[t | e
2 Yy Y, = T 172 ‘ ' : -
B S RN ST
’ A 0 du' / v dv! ‘1/2 [}im(t-'rl) + il‘.b('t—Te)] (38)
2 Vu,/k:l:_' (v ) kq'u! (Y = 7")

LonZ NI VOWN

Ge



where

9c

(uw _ u:)l/E(vW _ vt)l/E]

=l

Tl=-é']—‘ﬂ-[vw-v‘+uw-u'-

]

r

""Emfgl_vw-v‘+uv-u'+

411V

L a2 L n1/2]
(“w ( W )

Introducing Z and Z as before (cf. equations (23)), end then following the procedure
of deriving equation (24), equation (28) can be written as:

uw- - -1!
[ﬁem/_@_\l/e du'egu;eﬁ(uw )

d(u_.v.-g-o.t)':- — [/
s ™ \aBn/ J (1 = ur)l/E' |
0

0 S
ok 1 I F nw:rz :U.w-ut) _

UEEJ“(%)-L/AﬁJ /k c'i'l.‘l.‘eW:HU."):L/::2 [—C(Zln) _ C(z:!_") + is(zln) + is(-z-luﬂ (39)
Y/ 51

where, replacing k; by ko',
Z1' = Z7 1in equation (25a)

Z' =27 1in equation (25c)

Loghg NI VOVN



NACA TN 2467 | . ar.

and, replacing k; by k',

N
|_'-n
1

Z, 1in equation (25a).

X
L
I

Zi in eouation (250)

Similarly Y can be defined as in equation (26) and by the same
procedure CP can be determined

[

APPROXTMATE ANAIXTIC SOLUTIONS OF PRESSURE ON AN

OSCILLATING FINITE WING - SECOND METHOD

¥

In the preceding section, an approximate integral solution for the
osclllating finite wing is given, and an example of calculation is shown,
but the full evaluation of the integral for a large number of cases
would teke more time than was avallable. However, for very low fre-
quencies, this problem can be solved asymptotically by using a few terms
of a series expansion of w(u,v;t) In the following section the approx-
imete analytic expresslons will be shown.

Anglysis

From equation (22&), . : t

i(DTl ’ iLDT2
Pl %,5,40,t) = - = (aE dn (L0)

where S wl is the area PABC as: shown in figure 6 Since:the two- :

dimensionel solution with supersonic leading edge is known, the potential
can be obtained alternatively by calculating the contribution of S T
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which is the area BCD, the difference between the two-dimensional source
area PAD and 8,4 as shown in figure 6. Then,

- -1wT -
Uﬁeiwt e 1 + e lTo
p(x,5,+0,1) = -—— g an -
218 r
S .48
wl “wa

-iwTy - iLDTe
e + e

g an
Swa

= ¢O(X)Y:"'O:t) = 5(x,y,+0;t) (k1)

5( X,¥,+0,t)

ast ~iwr - ;
Uae Jﬁ]ﬂ e 1,e 1wTa
-—— dg dn
QnBE 3 b
wa

1

+0,t - + wik,n,+0,t - T
1 ff V(g:n: s TJ_) W( >N, +0, 2) aE an
B2 r

Sy

(k2)

The variables Ty, Tp, T, and w are the same as before. In this

development, it is found more convenient to introduce a new coordinate
system as follows: The x'-axis passing through the fixed point (x,y)
runs upward along the right forward Mach line. The origin is taken as
the point where the x'-axis intersects the wing-tip side edge. The
y'-axis following the other Mach line runs left upward as shown in
figure 6. The origin of the x',y"' coordinate system is translated
Bd

from the origin of the x,¥y system’a distance W’

vwhere _8 can be
shown to be .
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(x + By) _ (43)

" 'U'JIZ

which is a function of the point P(x,y) only. The transformation
relations are

X'=—-21%(x-ﬁ5 By)=—-é—(g—x—lviy-8) X (x'+y -5)
y'=--§—B<x-%6+l3y)=-%<%x+m-a) y=-IJ'=I(x'-y')
tr= -2 -Bo-pn) e =Bt e n - 8)b (1)
! M B Lieq 1
n =-'§-B-<§-ﬁ'5+ﬁ'rl) Tl=ﬁ(§ ‘Tl)
a(x':y")=_M_2_
o(x,y) 28 J
and

r = )G ) = S\ - x)
me gl e RG] ¢ (15)
e[ e w0 ¢ B )

-J




Now e 1 ang e 1072 ian ve expanded in terms of the new variables
_4svTn \i ( -in'l ‘n T'?E"'
T ] Y - f o=
e = ) X = A-1) Ty
e R 20 n!
a LL_ _Lq.. t _'E |f [ :
Zn=u n! (a.B) (Ll o TN “.)‘ . (46)

vhere H = ET - x' iB introduced.
Similarly,

If attention 1s restricted to cm’-|l <1 “and |aerl <1, e‘jmﬂrl

{ -

-im'r? can be

end e

approximately represented by a few terms of the series In the later development, five terms
of each series ere used. Of course, for higher values of |cm‘11 and lm’rgl more terms should
be used. In‘tro_ducing this approximation into equation (L2}, "

- E—’;‘(uu ) )
! ﬂ"‘ﬁ' #0,) = ‘Lﬁ ‘[‘5‘ dﬂ 5‘“1 'Wﬂ) -

[

il

t -x! ﬁ-%‘:—;(mx') , =) .
an )2 !
o B & » -——(u+n)“-:¢;5(u+l)f‘!ﬁ3b*+nz3+

o U I .. A3 2 4
m(u+n\ +1m [W+m@*ﬂ)+—%m+ﬂ)] _&E(‘)E‘l fw)

of

Loe NI vOvN
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Integrating with respect to 7! and :Lntroduc:Lng é. group of new
notations, :

N - i‘D-t I -k _ . .
- -\[2y ,Uae . .
g(x',y',+0,t) = \/——2 (e2z2 +:‘ehzl‘ + e6z6 + e8z8 +
M 77 zr2 ‘ .
o) < o+ e + (o - ]
' | ‘ | (49)
S . e, N _ o,
where 71—B_k; 72_B+k’ z= =Db 72#, b = By48 72x,a.nd |

the e's, g's, and hg are given in appendix B. With the aid of the
formulas in gppendix C, the following integration of equation (49) can’
be carried out with respect to z:

; A h
5(x,b':+0;t) = "2%{ &eim%‘:sm-lvﬁ :%zl cl,n(x - W)n + m nz=o Ue,n(x - W)n +
’ ) 2

Vr(x + 8y)3 % o3 nlx - W)™ + \J-y(x + By)? % oy nlx - ky)" +
n 3
L ,

Voy(x + 8y)7 ngo o5 n(x - )" + \/-}'(x + By)? %0 * .

3 = 2

730+ By) S ol - )™+ o3+ 893 3 ol - )" +

n=1 ’ n= ’ )
_ 1
\l_-y3(x + m?;_:o o9, n(x - k)™ + -33(x + 85)7 Ulo,o] (50)

where the cm o' (m and n are integers) in terms of ®, k, M,

and B are given 1n appendix B. By definition,

Cp=-"FT—-=— ’ (51)

-2 L. 223 - (52)




Differentiating equation (50) with respect to x and adding equation (52),

[, ipl [EF Bvr-cz _an-l gqcz , ; ,
Vx__kyl-n&_i ln\X W} + T néiol’n\x-jgy)—l+

Al

~ f o N -
bp\x,y,w,ﬁ) =

< . n-1 , i f: 3 3 : n
J-r(x + By) 2_1 nop olx ¢ k)7 + T dp,n(x - k)" + 35 Zﬂ 03,n(x - ky) +

3 3
Z Jo (x - h’)n‘j\ + \}‘-y‘(x + Iﬂy)gi:n: 1oy n(x _ ]Q")n 1 + %g % 9 n(x _ ky)n +
2 2 11T 2 n-1 1o n
enzchnx'ky) + -Y(X+BY)5.;MLH(K-BF) +FZ%H(K-1¢:’) +
L . B ]
52 5 plx - ky)7 |+ V-y(x + ﬂy)('_c_r5 1t T >T 05,11(:: - ky)© + 5 US,O_' +
h _ n=0"
~y(x + By)g\% og Q) + \-y3(x + By) 1 ncr,,ﬂ(x )n' i o7, n(x ky)® +
' - ' = 2= n=1
3 o als - w07 + V-r3(x + 8 IS nog s - 0™+ BT a (-
5 ; 8,1 | y &= 8,n % 8,n
p— l 1 ]
1
gg 9, % = W)™ |y e ¥ By)5 9,1 'ﬁ"; O R o}
) - 1 , ‘
e py)T 2 UlO’OT - (53)

cE
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where again the op ,,’8 are given in appendix B. The actual pressure
coefficient is ?

T e —— m—— oy — ——— — e —

= Cpo(%,¥,0,t) ~ Cp(x,¥,0,1t) o (54)

vhere @p = @y - @ as given in equation (41) end Cpo(x,y,o,t) is the
pressure coefficlent of the two-dimensional caese as given in reference 5.

Rectangular Wing Tip ‘
For the rectanguler wing (k = 0) equations (53) and (54) reduce to

L
Cp(x,¥y,+0,t) = ;lt-aei‘”t ‘}m‘l\fli——ﬁlio a ™ + \[y(x + By) Zo bx" +
n= n=
3 2
_y(x + By)3 e x® + \|-y(x + By)° a.x +
\-¥ y nzo o \} ¥ Y % n
1
q-y(x + By)7 E;% enxn + V-y(x + By)9 f +
n -

3 2 '
\]-y?’(x + By) E—:o gx™ + \]-y3(x +By)3 > bx+
n=

. n=0

L
N3G+ 8902 5 a3 + )T J] (55)
n=

vhere the a's, b's, ‘p’s, d's, e's, f, g's, h's, i's, and J
are given in appendix B. (The particular 8 for k=0 are

found in appendix B.)

1
%m,n
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Average Pressure Coefficient over Rectangular Wing Tip

For engineering purposes, an average value of CP av oOver the

entire tip influenced by the three-dimensional flow may be useful.
(Assume unit tip chord.)

1V 1. . p-x/B ‘Z
VCP:B-V = EL dxf dyCp
_x/B -
f f dy[Cp(x,y - Cp(x + By, +0 )]

=Cp1* O | (56)

%%IH

vhere 2B 1is the wing-tip area influenced By three-dimensional flow.

\ 1 5 -x/8 '
=1 — dwt n -1 |x+ B 7
Cp1 = g O ax 2 anX db’(sin Tz"§>
. ’ O = 0 ,
1 5 1
= 1;;515 gelot dx 2:6 gnxn cos™ g dg
0 o -1
_A_l - jmt 5 an ‘ N ' ( )
- Eﬁ'ae re! n+2 57
Whefe
x + 2By _ q
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x/B
Cp2 EBT[ ia)tf f —y(x + By) 2_ b xn +

,/-y(x + By)3 i c xn + \[-y(x + By)? Z d,x? +
\/-y(x + gy) 7T ngo epx” - \-r(x + By)9jif + '\/-y3(x3+ By) ngo &n

2 1 :
‘\,-y3(x )3 D> na® 4 (x4 By)0 S gt + \/-y3(x + y) T .{'
Fl=0 n=0 .
| (582)

Iet By = -z°. Expanding higher powers in terms of (x - 22)1/2xk223’
the integral may be integrated by formula (C2) in appendix C to

-1 - :
2 = m’tfl blx2+b2x3+b3x“+b,+x5+b5x6)

1
-1 _ dwst i bn
48 =
The by’ 's are given in appendix B. Hence,

CP: av =

Eh

) 2 ap + bp' -2 | | . g
@ldt SSRGS o ()
n=0 n=0 o

(See .appendix B.)

-

- Calculetions and. Graphs

Owlng to the complicated nature of the formulas in this sec‘tion,
the calculations are rather tedious. The calculations are too long to
be included here, but the essential results are summarized in figures T

35 .
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to 15. The pressure coefficient given in/this‘paper is referred to a
polint on the upper surface of the wing. Filgures 7 to 10 give the pres-
sure distribution on a rectangular wing tip of unit chord with different

free-stream flight Mach numbers. The frequency parameter %? is teken

- ’ th
as 0.2 in these calculations. As before the complex quantity :—i%E
. ae

is used and plotted in two parﬁs - real and imaginary (e.g., figs. T7(a)
and 7(b)). These curves are plotted along the spanwise direction (y
being negative when measured inward from the tip) at various percentages

nC .
of chord. If —i— along the chordwise direction ls desired, some

=_iwt

ae
cross-plotting is necessary. It should be noted that these curves do
not give the pressure coefficient CP directly, but Cp may be calcu-

lated easily from them by using equation (37a) or (37b) or both.

Flgure 7 is calculated for a Mach number of Vél (Note that
figure T checks well with figure 5 which was calculated by the first

7C
method.) It is seen that :—i%; is zero at the wing tip (see
N ae R

fig. T(a)) for all values of x, except at the leading edge where

gelwt

result along the Mach line -y = x. Taking the trailing edge (x = 1.0)
7C
as another example, (:—3%5) increases from zero at the tip (y = 0) to
ae R

7C
—2_ becomes 2x, which is in agreement with the two-dimensional
R L]

a value of -1.885nr at -~y = x = 1. Thus it is seen that for this

nC

case :fi%E varies very little along the left Mach line of the tip
ae R

as is shown by the dotted line in figure T(a). The horizontal solid

line for -y > 1.0 is the two-dimensional result. The imaginary part

= 1wt

7C
—LE shown in figure 7(b) is of a similar nature. Figures 8, 9,
ae I

and 10 show the same wing oscillating under the same conditions except
that the free-stream Mach number is now 2, 3, and 4, respectively. A
few points may be of interest. As the Mach number increases, the maximum

nC nC
magnitudes of both (:—i%E> and (;—EEE) decrease, while the two-
R ae I

ae
* dimensional values become more nearly constant.
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In order to show the accuracy of this method, a comparison between
the result of the present approximate method and the two-dimensional
values along the left Mach line of the tip cone is given in* figure 11.
The case considered is a rectangular wing tip (k = 0) and the free-stream
Mach number is taken as V§. The solid line shown is the approximation

we

and the dotted line is the exact ome. At —% = 0.283, the deviation is
: | ’ ap
unnoticeable. At jE%_= 0.707, which is beyond the Ilmposed limit, the
ap

maximum deviation of the imaginary part amounts to 10 percent. The same
curve at x = 0.8 ‘corresponds to the case of x/c =1 with lower fre-

quency parameter j&% = 0.707; at % = 0.5656 the meximum deviation is
ap
of the order of 2 percent. Thus beyond L - 0.5 +the approximation of

2
ap
the imaginary part is not very favorable unless more terms of the series
expansion are taken.

There 18 another parameter which influences the accuracy of the
present method, that is, the sweepback angle (A = tan~1 k) of the super-
sonic leading edge. Figure 12 offers such a comparison. Here the Mach

e
number is \[2, o2 '
line gives the two-dimensional exact results along the left tip Mach

C .
line, and the lighter line of the same kind gives :—R—— of the present

Felwt

) C
method. Although :—EEE does show slight deviation from the exact velue
e )

at higher values of Xk, the comparison is favorable.

= 0.283, and the parameter k varies. The heavier

In order to show some cases with high sweepback angle (although the

leading edge is still supersonic), figure 13 gives the distribution of

C
g;%ﬁf over the three-dimensional wing tip of a 45° sweepback angle at
M = 2. For a matter of convenience in calculation, the results are
expressed 1n oblique coordinates x + By and X - y. The line

X + By = Constant 1s parallel to the left Mach line, while

X - y = Constant is parallel to the leading edge. Here, the chord
normal to the leading edge is chosen as unity. Therefore, x -y .
represents percentage of chord. With such a definition of the chord,

the chord ¢ used in the frequency parameter 2L should be considered

2
ap
as this normal chord. The circles at the left lower corner of
figure 13(a) represent the values along the left Mach line. With the
sketch on the figure, the general features of the curves are clear.
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‘A comparison of results of this sweepback case with two-

c

_dimensional exact values of :7%55 is also shown in Pigure 1k. The
. ae

comparison is favorable. The two-dimensional valie of ——%55 for a
; § - e
sweptback wing is obtained from reference 6.

For engineers, the pressure distribution on the three-dimensionsl
wing tip is not of so much interest.as the average pressure distribution

Cp,av‘ Figure 15 calculated from equation (59) may serve such a purpose.

The expression Cp = -QCP ay 18y be considered as the 1ift coefficient

for the three-dimensional wing tip. The rectangular wing tip (k = 0)
at various Mach nmumbers is considered. The dotted curves correspond to

%? = 0.2, and the solid curves, to %? = 0.5. The magnitudes of both

the real and the imaginary parts of :EEEE decrease with”increaéing

ae
\

Mach number as mentioned before. The change of %? from 0;2 to 0.5

C: ‘ ‘
causes a slight drop in the resl part of :—%55 but a greater drop in
ae

the imaginery part. The average pressure &at %? = 0.2 deviates so
1ittle from the steady case (o = 0) that it is hard to show in
figure 15(a).

The present method does give a closed expression, but it takes a
great deal of time to calculate even a single point.

DISCUSSION OF RESULTS

With the above analysis, & few points should be emphasized. From
Evvard's concept of the "diaphragm,” the two approximate methods have
been shown to give a satisfactory pressure distribution in the wing tip
influenced by the three-dimensional flow, '1f the frequency parameter is
low and if the leading and trailing edges are supersonic.

The comparison of the pressure coefficient obtained by the second’
method with two-dimensional exact solutions of linearized theory is

we
favorable, if the frequency parameter —EE is around 0.5 and the point
a ‘

18 at the trailing edge. It is expected that the fifst/method should
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\

give satisfactory results with the frequency parameter of the order of
one-half. Of course, if only the average pressure coefficient over the
entire tip bounded by the left tip Mach line is wanted, & higher fre-
quency parameter up to the order of unity may be used.

The effect of the three-dimensional flow on the wing tip is essen-
tially to reduce the pressure increment in the area. With the approxi-
mation given by the present theory, the pressure coefficient at the tip
side edge is zero except at the point on the leading edge. Of course,
the exact theory would give finite values at the side edge, which would
approach zero (as ®—>0) as predicted by the conical-flow theory. At
low values of the frequency parameter, the effects of the finite edge
pressures glve negligibly small contributions to the aerodynamic behavior
of the wing as a whole. It is in this fact that the present methods find
their justification. _—

The effect of increasing Mach number 1s to reduce the real and
' C

imaginary parts of :_EEE in magnitude, if the sweepback angle and the
de

frequency parameter remain the same. If other conditions of the wing
remein the same, increase of the sweepback angle causes the magnitude of

C
the real part of :4%55 to increase and the imaginary part of it to
Ge ,

decrease as shown in figure 12. Increase of frequency parameter has
the opposite effect. .

The pressure coefficient of a point influenced by the nose of the
sweptback wing is given in terms of the Fresnal integral. It is not
difficult to carry out the numerical integration for this case. In this
portion of the wing, no approximation is used.

The first method of calculating Cp at the tip using the Fresnal
integral appears worthy of more extensive study in the future as the
method i1s very simple and useful. The second method gives closed
expressions for CP and Cp;av and 1t has been investigated extensively
in the present report.

The present analysis applies only to cases in which the flow at the
leading and tralling edges is supersonic, and the nose Mach cone and the
tip Mach cone do not intersect within the wing area. With slight modifi-
cation the methods caen be extended to more general wing plan forms.

The Johns Hopkins University
Baltimore, Md., November 15, 1949




APPENDIX A
SYMBOLS

velocity of sound
source strength

7

E oy (equation (149))
7o

coefficients of C
pyav

chord

drag coefficient
1ift coefficient

moment coefficient

pressure coefficient
€

Fresnal integral cos g-(e')e de'
0

function concerning source strength

maximum descending rate

unit vector in x-direction

constants expressing wing inclination
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L3

M free-stream Mach number
q velocity vector
q' perturbation velocity vector
et 02 (- ) [ - w2+ e - 7]
S | surface
) €
s(e€) Fresnal integral JC sin % (¢')2 de'| (see fig. 2)
t time
i free;stream velocity
u,v characteristic coordinates
u' - source location aiong u-axis
v! source location along v-axis
W velocity component in z-direction
X longitudinal axis
x',y! transformed axes
y spanwise axils
i/2
R
Y, = <2wl32>1/ 2(% _ V_W)l/ 2
naM kg

z vertical axis

= () T e - B -]

- A i T e Rty e e e et e e -~ e e T ——
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2 T1/2

Z3 N ap 5]
o \1/2 klv; 1/2 1 v.\1/2
(@) ) w2
a | angle of attack or slqu of streamline‘surface‘v,4
q amplitude of angle gf atta;k (Emax/U> -
B= (M2 -1 |
A sweepback angle
71 constant (E—%}iz)
72 constant (B 1 k)
73 constant (B'2+kk>
8= (x+ py)
4 * source location aléng z-axis
1 source location along y—a#is
A slope of diaphragm
A ’amplitﬁde of oscillation on diaphragm
p==8"-x'
3 source location along x-axis (t-axis)
o slope of bottom wing surface
Op slope of top wing surface

(o] coefficients for Cp

43
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T time Interval

M r
Tq = =— (x - g) - —_
1 aB2 a

M r
T2 = _é‘ (x - g) + a

perturbation velocity potentisl
w angular velocity per second
® frequency parameter (u_:dﬂ_c)
o frequency parameter (@43)
8.52

Subscripts:
B bottom wing surface
D ‘ diaphragm, except in the case of drag coefficient Cp
I imaginary part
R real part
T top wing surface

w wing
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APPENDIX B

FORMULAS USED IN SECOND METFND

Formulas for Use with Equation (k49)

ep = b - iy y(x - k) - 2877, (x - by)2 + 37,3 (x - xy)3 + 2@y )

[h’ﬂ - 1@272(3( - ky) + 211733722(3 - ]Q')E + —ﬂ) 723(X - W){l

86 = \71 3
g = Afr2V/? 0 1 73
8 71 3M2
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|
TN
~2
oM L
~—
o
TN
- R
w
o
Uil &=
[¥Y)
W
Ul ®
S

Formulas for Use with Equations (50) and (53)

1/2(2)

(o}

1,1 = 2("172)

g

1/2-2, 2 3
01,3 = 2(7172) / a)272 (—l - -é- 731 - Z

o1,y = 2(117p) Y 2537, (_ Tt 8732 1927337 G 7, "

/2.~ (. 3. ).
1,2 = 2(7172) / iw?z('z -5 731)

1 71
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0']_|_’ 1

0')+’ 2

/2.4 4|1 -1 5 35 21
2(r172) " 28ty [Ig+1731+1—6732+1‘9_2733+25_673u+

L A, 517, 7 17 1 7l2
12M2 7o U8 M2 7o (31 192 M2 7, 327 6o_mr

2y 2“’2(2 *373)
5 1N
1/2 3. 2 35 171,51"N1
2(70) /21837, <“ Th7n7 873271937337 g8 7, T U8 2 75 31)

1/2-h 4 35 o1
2(71) /% 72 [‘ 1: 731 ‘3 732 ~ 192 733 T 56 730 T

4 71 — 71 _ 71\
LA, 5 N, _7_32__1,32+_1F<_>
12M= 7o W8M= 7o 192 M= 7o 160MT\7

2(71)1/21‘572(731)
2(71) /2“3272 (731 + 25 732)
R I 753)

1/2-k 4 L 5 35 7
2(71)7 @2 ( €731 " %5 732 " 288 733 T 128 73#)

2(71)1/ 2‘3272 <:3L 732)
2(7) /2137, (—— 732, - % 733)

2(7) 2gly, ( % 732 ‘775 733 - % 73h)
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75,0 = 20"/ 253723("%5 733)

_ /2.4 4 1 -3
05,1 = 2(7)" @ 72 ('12 733 ~ 8o 731*)4

%,0 = 2(7)1/261‘721‘(-31—0 734>
2 l 21
7,1 = 200/ (5 #(3)

3/272 ﬂ,s(_i _ 35 )

2T AT U T e

: 2

- 32" w1 5_ 7. 117
073 = 2(71) 2 ® ( g~ on 731 96 730 8 12 7,

1 _of4
98,0 = 2(7'1)3/2 2 a>2(§> .

%,1 = 2(71)3"/2 72(—E -2y )jﬂﬁ

M2\ 9 ~ 18 ‘31
%,0 = 2(r1) /2 :;2- ifﬁ?’(—% 731)
%,1 = 2(7'1)3/2 Zfée‘ 5h<-% 731 - 575 T3p - 516 Elé- —7—;-)
10,0 = & 1)3/2 222 J(—% 730 + % N:{LQ %)
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2,2 = 2(71)

5 = 2

M2 \6

1/2,3 123(.1_ n,

721}'

7
[_1__;+

M= |12 72

57 5
7o W8y, 3L

57 . . 7 "1 1 17\
AN + - —_—
IACAE TACE 8

Formulas for Use. with Equatien (55)

8.0=

8y =

A, =

a3—

ay =

<lg <lf <F <F <E

&5

1,1
Ul’l + 201,;
01,2 *+ 301,3
o),3 * 1(-01,1,_
Ul,h + 501’5
91,5

w3
U 72,0 7 2 93,0

Q
Y
.
1~
+

o
Q
+

<l <ff <fE
njw

no
.
n

rojw
Q
+
Q

302,3 +

oo

2

b
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C1

Co

€0

€1

g1

8o

1w 2
2030 T 7 93,1 5 %,1

303,3 + EUQ 03,2 + -g- 0%2
%‘) 93,3

%,1* T %0 * 2 %,0
20’)4_,2 + TJ,— 0’14_,1 + ._?_ 0'5’1
% Oy, 2

95,1 * % 9,0 * % %,0
‘if? 95,1
% 9,0

O, * % 98,0

207,2 * T ot 3 9,1
30 + =0 + 3 o

7,37 U 7,2 " 2 78,2

% °1,3

98,1t G 98,0 + 2 09,0
%D" 9g,1 * 29, * g &9,1
% 98,2
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G . =X
1,1 78
01,5 =5 &(-21)
o _lzef2_ 1
L,3"BY\ 3R
_ 1,31, L
PR ] R -
1,5 B 7130 " 10M2  soMt
-1/2 '
0p,0 = B/2(-1)
_ a-l/2 .=
0y, = B7H/2 1i(2)
-1/2 =22 1
Op,p = B / ‘”(?’;ME)
95,3 =B / j‘”3<'3'+_§>
0’2)_'_=B—'l/22f) ...-l—.|.._l—+ l>'
’ 30 T 1oM2  BoMF

Q
(98]
.
(@]
1
@
o
=
S~
\v]
B
/'\_
| &=
S
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e i)

9,0 =
1/2 =) (16 1
09,1 = B 5O (75 25M?)
5 1/2 1 =l 32 .8
10,0 525 T5M2
-12i =2/ 1\ _
0p,1 = B / ¥ ® (-—3'>
T = B-l/2 _]; :LL?)3<':-L-)
2,2 V2 N

It

-1 2 1 _h 1
92,3 / w2 (10 80M2)

Formulas for Use with Equations (58) and (59)

bo' =0

by - ol
%'=%%§@
bf’%%ﬁ%+£@

Co Q= 1 1 1
®5 "B U(‘” )<180 M- l;80M“>

23
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c‘=l
1 B2
c'—-!"—
2 —B2
c'=L
3 g2
ch'=-—£
. 52

L
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5<_£+£E>

3 2M

ﬂ§;+;£__L_
8 6 M2 16M°

sl 18%, 1 12 1
14 120 ¥ M2 80 M2 3&;@
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APFENDIX C

INTEGRALS USED IN SECOND METHCD

(n21) (c1)

ok

Il

L/1:2'1(&2 - 32)1/2 ax = _(32 )S/EZ 1 {(en-)Yn-r+1)!(n-r+1)! E2(r~1)x2n-2r+l N

=1 W1 (en-2r+2)i(n+1)!(n-1)!

-1)1g2n
B Ty e - R Bm'l 5 (n21)  (ca)
an_ ) 1/2 4 3/ |
o Fﬁ L +T) = 21] H o+ Tl) - 3 | (03)
J

Lohe NI V¢

Gs
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fn%]—e- (1 + )2 = 2n'/2(u + n)2 -%nyg(u +n) +%ﬂ5/2 (ck)

fﬁ? (v +1)3 = 2q1/2(n + 1)3 - 1n3/2(n + )2 + 15—6'715/201 + ) -

g_g T]7/2 CoE : (c5)

'['l .

%%8 272 + n) +‘% n9/’2 | (c6)
an o1/2 Ly _2 .3/ L 5/o |
G R G Vi i G Vi (cT)

: fdn nl/z(u + )2 = % n3/2(u +17)? - % n5/2(uu+ 1) +‘% n7/2 (c8) |

o
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Figure 2.~ Wing area S, and diaphragm area Sp which lie in forward
Mach cone of a point (xp,yp) on right tip diaphragm.




Figure 3.- Wing areas 5. and 8,0 and dlaphregm ares
in forward Mach cone of & point (x,y) on wing surface.
systems (x,y) and (u,v) shown.
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Figure 4.~ Wing areas W, and W,, which lie in forward Mach cone of a

point (x,y) in nose sectlion of a wing with supersonic leading edge.
Two coordinate systems (x,y) and (u,v) shown.
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Figure >.- Pressure distribution along trailing edge of a rectangular

wing of unit chord with %¢ = 0.2, M=|/2, and x = 1. Calculated
with first method (Fresnal integral).
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second method.
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x=0.25) |0.50 _o.rg I.&A
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(a) Real part of .
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Figure 7.- Real ‘and imaginary parts of

along -y at various
ae
values of x for a rectangular wing tip (k = 0) of unit chord with

% = 0.2 and M = \2 (used for calculating pressure distribution

on wing tip influenced by three-dimensional flow). Second method.
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Figure 8.- Real and imaginary parts of

Tk along -y at various
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values of x for a rectangular wing tip (k = 0) of unit chord with

%:o.z and M = 2.
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Figure 9.- Real and imaginary parts of ﬁiim along -y at various
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values of x for a rectangular wing tip (k = 0) of unit chord with
e

= = 0.2 and M= 3.
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Figure 10.- Real and imaginary parts of __ER— along -y at various
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values of x for a rectangular wing tip (k = O) of unit chord with
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Figure 13.- Distribution of _S.Pw_t along constant x - y at various
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values of x + By for a 45° sweptback wing tip at M =2, — = 0.k,

and k = 1.
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